

e World Health Organisation

NHO) first published its formal

efinitions of disabilities in 1980,
but updated them at the turn of the
21st century to not simply refer to a
disability as a “personal attribute”, but
to be “context dependent.. reflecting
the interaction between features of a
person’s body and features of the
society in which he or she lives”

The WHO's point was that disability
happens during interactions between
a person and society on a physical
and cognitive level, and the web is
a huge part of that. There are
mismatches between how a user
interacts with the web, or even their
computer, that differs from that of the
people that made it.

These conflicts can prevent a
person from engaging, and
sometimes even interacting, with
the content of a site.

Itis the job of designers and
developers to factor in these cases
and create inclusive web experiences
that work for the largest number of
people possible.

The W3C has a comprehensive
list of requirements that can be
completed to achieve web
accessibility, be that at AA or the
stricter AAA level. However these are
not enforced and, as a result, often
overlooked, and the last full version of
the WCAG (Web Content Accessibility
Guidelines) was released nearly a
decade ago. However, there are in
fact many simple ways to make your
sites more accessible, and ensure
that the most people possible can
enjoy your content.

Last year the Home Office released
some posters offering guidance for
designers and developers on how to
make sites accessible to everyone.

They outlined rules to help those with
low vision, deafness, dyslexia, anxiety,
users on the autism spectrum, or
those using screen readers.

We will look over some of the basic
changes you can make in markup,
styling, and imagery to improve your
site’s accessibility, and then use these
pointers to tackle some of the design
and development challenges
associated with specific disabilities.

My own approach to accessibility is
with Octopus Energy. As an energy
supplier, we need to cater to a very
wide range of needs. Everybody
needs energy and it's a basic human
right. However in this industry it's
dominated by large suppliers using
legacy systems and generally poor
support for accessibility. There will
be some improvements and
advancements we've made in this
article as practical examples.

ACCESSIBILITY

CONTRAST LEVELS

This is an area that affects not just
users with low vision, but those
with dyslexia and autism. You may
be pleased with your design, but
is the colour scheme preventing
some users from interacting with
your content? It’s easily tested for,
and there are ways to turn this
issue into a positive addition

to your website.

SKIP TO MAIN CONTENT

As part of making your website
accessible to keyboard-only users
and screen readers, learn how to
implement a small ‘skip to main
content’ button to save your users
time and unecessary stress. It
requires only a few simple lines

of markup and styling to achieve,
and you can see how in the ‘styling
& imagery’ section (pg. 77).

COLOUR BLINDNESS

Colour blindness can encompass
such a wide range of things visually,
meaning that it’s very likely that
users are seeing your site
aesthetically from thousands of
slightly differing perspectives. In the
‘low vision’ section (pg. 79) we talk
about the different types, how to test
pages under those circumstances,
and how to plan for them.

SUBTITLES & CAPTIONING

Videos are a great way to provide
information to your users in an
engaging format, however without
subtitles or captioning, they can
alienate users who are deaf and
even those who don’t speak the
language in your videos. Check the
‘deaf/hard of hearing’ section (pg.
80) to learn more about subtitles
and captions.

feature 67

AGCESSIBILITY

The easiest first step towards an accessible site

All headers in a web page should
have a hierarchy, beginning with the
most important header to the least,
and the markup of the page should
reflect that. In HTML, the most
important title is an <h1> tag, and can
go all the way down to an <hé>. You
can use as many or as few of these as
you like, but they must start with an
<h1> and must always be used in
order. The reason for this is that
heading tags denote importance to
screen readers, and out of order
headers may well confuse a user.
Proper heading structure also
benefits the SEO of your page.

You can check this using the
HeadingsMap extension for Chrome.
When run on a page, this generates a
tree based on the headings on your
page, and highlights any that are out
of place or have been skipped entirely
Tip: To dispel a common myth, having
multiple <h1> tags in a page is no
longer a huge taboo. Google itself
states that you can have up to three
<h1> tags in a page that are used to
garner its content. It's important that
those <h1> tags remain on the same
hierarchical level as each other, and
that as you make your way down the
heading ladder, no rung is skipped or
added out of place.

HTMLS Outline is the concept that -
rather than being restricted to a
cascading style when it comes to
headers - the structure of a document

could be split into sections through
markup and that each of these
sections could have their own heading
hierarchy. The user agent could then
more easily apply this information to
generate a table of contents which
could then be used by assistive
technology to help the user navigate.
For example this would be the
current approach with headings
always cascading:
<div class="section”
id="brazil-weather” >
<hl>Brazil weather</hl>
<p>...</p>
<div class="subsection”
id="brazil-landmarks”>
<h2>Landmarks</h2>
<p>...</p>
</div>
</div>
You could have a system like this:
<section>
) <hl>Brazil weather</hl>
<section>
<hl>Landmarks</h1>
<p>...</p>
</section>
</section>
The key here would be to make sure
that each *<section>' tag is easily
identified, and has an appropriate
header, and that no parts of the page
are “marooned” from a screen reader’s
perspective without context. Although
this feature has been in the W3C spec
since 2008, it has yet to make it
beyond a theoretical stage. However,
it's possible that it could make the
whole page - not just its headers
- more digestible for screen readers.

68 feature

y find

tas

35e5

non

tion.

2t
with the ‘navigation” aria-role or using
the <nav>' tag, but what about less
obvious sections?

You can create a header with a
small class that visually hides it, but will
show up on a screen reader like so:

<hl class="screenreader-

visible”>This is my section</
h1>

.screenreader-visible {
position: absolute;
width: 1px;
height: 1px;
padding: 9;
margin: -1px;
overflow: hidden;
clip: rect(9,0,9,0);
border: @;

Tip: Bootstrap has utility classes built
in that can include content for screen
readers only and enables only those
assistive devices to focus on it, see .
sr-only” and “sr-only-focusable’ in the
latest version.

Accessible Rich Internet Applications
(ARIA) defines a way to make web
content and web applications more
accessible to people with disabilities.
ARIA Landmark Roles help assistive
device users navigate your site,
enabling them to tell the difference
between different sections. There is a
full list on the W3C website, but these
are the important ones to remember
since they cover the core area of a
typical page:
banner - Typically the header of
your web page that includes the
name of the website
search - For the search form
main - This would designate the
main content area on your site
navigation - Use on any navigation
list, typically on the nav element

contentinfo - Typically the footer
of your web page

To add an ARIA role, you simply add
the ‘role” attribute to your element with
one of the attributes.

<header role="banner”

class="site-header”>
As well as the above landmark roles,
there are also roles relating to ‘widgets’
(button, slider), composite roles
(menubar, tablist), and document
structure roles (region, toolbar).

States and properties

As well as properly marking the
sections and roles of a page, there are
also ARIA tags related to state and
properties, enabling you to provide
context as an action is being carried
out. For example, you can inform
people with screen readers of certain
visual functionality such as an
autocomplete, if a radio button is
checked or not, or even the min, max,
and current values of components like
sliders. There are even ARIA state roles
for drag and drop functionality.

It's worth taking some time to look
over the full list (http://bit.ly/2EB2Jb)
to acquaint yourself with them, as it is
one of the biggest accessibility gains
you can make on a website.

Tip: HTMLS implicit mapping

In HTMLS5, several of the landmark
roles are implicitly defined within
certain tags to make things easier.
main =<main>

navigation= <nav>
contentinfo = <footer>

article= <article>
complementary = <aside>
region = <section>

Aria hidden
Sometimes it can be just as important
to hide content as it is to label and
annotate it. The ‘aria-hidden’ property
is really handy for hiding components
that are on a page for purely visual
pUrposes, such as icons, so people
who are using screen readers'don’t
have to spend time listening to
them needlessly.

<p aria-hidden="true”>

This content is hidden.

</p>

ACCESSIBILITY

AUTISM

COMPLEX LAYOUTS

Autistic people often have
heightened sensory awareness,
and so can find busy pages
overwhelming. It is particularly
important to avoid complex
layouts and ‘walls of text’. Look
at condensing paragraphs into
a series of bullet points, or
providing a small ‘overview’
section for longer prose.

MOBILE-FIRST
APPROAGH

This idea of logic and simplicity
in layout and content comes up
in relation to a few different
disabilities, and realistically
almost all users. Visitors don’t
want to be overwhelmed. A
mobile-first approach is good
here, and a good thing for
accessibility in general. Learn
to make the simplest layout due
to screen restrictions and then
working up is a good mentality
for web in general.

DESCRIPTIVE BUTTONS

Phrases like ‘click here’ and ‘get
started’ may seem obvious but
are ambiguous and say very
little independently. Whereas
links such as ‘attach files’ or
‘subscribe to feed’ are clear,
concise, and unambiguous.

FIGURES OF SPEECH

You shouid always attempt to
write in plain English instead

of using figures of speech or
idioms. They can create
ambiguity and lead to a complete
misunderstanding of the point
that you're trying to make.

SELF-CONTAINED
ACTIONS

Regardiess of the context within
which you display a button/
checkbox/radio button on a
page, you should look at each
action you ask a user to perform
as an independent function; does
it make sense by itself?

70

Accessibility

How to make the new wave of imagery work with audible software

Screen readers have become much
more prominent in the last decade,
and where previously third-party
software was a necessity to enable
blind and visually impaired users to
operate a computer, there is now an
in-built system for every major
operating system.

Not only is this great for users
requiring the software, it's also made it
universally accessible to developers;
enabling them to hear a site they may
have only ever seen before.

Theyre made more powerful by
the upgrades we've covered already
on the previous pages, but it's still
important to consider accessibility
when new technology is introduced.
A great example of this is the surging
popularity of scalable vector graphics
(SVG) - here are a few approaches to
make sure they can be heard.

Alt & Role attribute
If you are displaying SVGs through the
' tag, it's important to have both
the alt’ attribute describing the asset,
but also an aria role’ tag of img to
make the asset’s purpose clear. There
have been issues with VoiceOver on
Safari where it will skip the image
entirely, even it has an ‘alt” attribute, if
its role is missing.
<img role="img” alt="A picture
of an apple” src="/path/to/
apple.svg”/>

aria-labelledby and

aria-described by

The better way to give your SVGs the
same level of accessibility as images is
to have them inline in your markup,
and provide a <title> and <desc>' tag
just inside of the main ‘<svg>' tag. You
can then match up the ‘labelledby” and

feature

‘describedby’ tags with the [Ds of
these elements like so:
<svg aria-labelledby="logo-
title” aria-describedby="logo-
desc” role="img”>
<title id="logo-title”>Apple
logo</title>
<desc id="logo-desc”>A
silhouette of an apple with a
bite taken out of it</desc>
</svg>
This enables screen readers to
understand the SVG much like an
‘alt” tag would.

Hidden element
A common and recommended
approach when it comes to browser
support and consistency across
screen readers is to add a screen-
reader-only element next to the
<svg>' It's a little bit more involved in
comparison to the others, but tests
have proven that all browser and
screen reader combinations are able
to announce the link with the
expected text.

<div>

<svg class="icon” aria-
hidden="true”>

</svg>

Close</
span>
</div>

If you choose this approach, it's also
worth adding the ‘aria-hidden="true”
attribute to the SVG itself. As covered
in the ‘'markup’ section, we don't want
screen readers to try and interpret the
asset itself if we provide it with a
separate description instead.

	Accessibility-WebDesigner272-032018-p66
	Accessibility-WebDesigner272-032018-p67
	Accessibility-WebDesigner272-032018-p68
	Accessibility-WebDesigner272-032018-p69
	Accessibility-WebDesigner272-032018-p70
	Accessibility-WebDesigner272-032018-p71
	Accessibility-WebDesigner272-032018-p72
	Accessibility-WebDesigner272-032018-p73

